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ABSTRACT 
Distributed sensors are increasingly finding wide applications 
in a world that is progressively more concerned about terrorism 
and other illegal activity.  Two of the most common 
applications include sensing intrusions along protected 
perimeters and attempts to tap into fiber-optic networks.    
 
The utility of the distributed sensor depends primarily on two 
key measures: 

1. Sensitivity 
2. False/nuisance alarm rate 

 
Sensitivity defines the sensor’s ability to detect the smallest 
possible disturbances while the false/nuisance alarm rate refers 
to the frequency with which the sensor responds to disturbances 
from non intruders, such as blowing dust, wind, animals, etc.   
 
High sensitivity and low false/nuisance alarm rate are opposing 
goals.  By tuning the sensor for maximum sensitivity one 
necessarily increases the likelihood of nuisance alarms from 
normal environmental sources. 
 
This paper describes digital signal processing techniques for 
maximizing sensitivity while simultaneously holding the 
false/nuisance alarm rate within acceptable levels.   
 

INTRODUCTION 
In simplest terms, an intrusion sensor consists of two principal 
parts: a sensing element and a decision network.  The sensing 
element applies principles of physics to produce a voltage that 
is, in some respect, characteristic of the intruder.  The human 

ear/brain system is an excellent example of this sort of sensor 
(see Fig. 1). 
 

 
 

Figure 1.  Diagram of the human ear (contmedia [1]) 
 
The intruder’s movement causes pressure waves in the air.  
These pressure waves travel out in all directions from the 
intruder, entering the ear canal.  Within the ear canal there’s a 
thin membrane connected to a series of three tiny bones that 
respond sensitively to fluctuations in air pressure, converting 
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these fluctuations into tiny electrical impulses that are then 
processed by the brain.   
 
The brain’s ability to detect an intruder depends on three 
things: 

1. The ear’s sensitivity to pressure fluctuations in the air, 
and ability to convert those pressure fluctuations into 
electrical signals transmitted to the brain   

2. The amount of background environmental noise 
3. The brain’s ability to tune out noise while detecting 

and processing the signal of interest 
 
For most of us, hearing is automatic, but only because we spend 
the first several years of life learning how to interpret the 
sounds we hear.  This is training well spent, however.    So 
powerful is the combination of sensitivity and tuning in the 
human ear that the average person can easily hear a pin drop on 
a hardwood floor, even when the room is filled with loud 
conversation.     

 
The human ear is an example of a point sensor because the 
sensing element (the ear drum) has a specific, limited location.  
A spider web is an example of a distributed sensor because the 
sensing element (the web, which vibrates when disturbed) 
extends over a wide area and has approximately the same 
sensitivity over its extended area. 
 
Many perimeters require protection.  Examples include the 
perimeters around chemical plants, airports, rail stations, 
nuclear power plants, military facilities, and correctional 
facilities.  One of the challenges for these sensors is the need to 
operate remotely in harsh environments with exposure to wide 
temperature ranges as well as rain, snow, slush, dirt and grime.   
Another challenge is the need to offer flat sensitivity with wide 
frequency range over long distances. 
 
An ideal distributed, long-length, intrusion sensor uses optical 
fiber.  These sensors can span tens of kilometers while 
maintaining optimum sensitivity along the entire length – 
vibrate the sensor at any point along this perimeter and it 
generates an alarm.   Fiber optic sensors have inherent 
advantages in for use in these unforgiving environments.  The 
sensor is all dielectric and passive, requiring no on-site 
electrical power at or near the sensing element – particularly 
important for facilities with highly combustible materials.   
Extended fiber optic sensors are also ideally suited for severe 
environments.  Low-loss optical fibers developed for the 
telecommunications industry are readily available at 
competitive prices.  These fibers are available in ruggedized 
cables capable of withstanding virtually any harsh environment. 

 
The sensing mechanism uses optical interferometry in which 
modally dispersive coherent light traveling through the 
multimode fiber mixes at the fiber’s terminus, resulting in a 
characteristic pattern of light and dark splotches called speckle. 
The laser speckle is stable as long as the fiber remains 
immobile, but flickers when the fiber is vibrated. The system 
works by measuring the time dependence of this speckle pattern 
and applying digital signal processing to the fast Fourier 
transform (FFT) of the temporal data. 

Because of the low loss of the fiber, the response of the speckle 
to disturbances is flat over a wide acoustic bandwidth. Since the 
sensing fiber is all dielectric, the sensor is inherently immune to 
electromagnetic effects that might otherwise damage it or 
interfere with the vibratory signal. And since optical fiber has 
very low loss (less than 0.2 dB/km at wavelengths of 1550 nm), 
the sensor can be deployed at remote locations that are up to 
several kilometers away from the processing electronics.  

NOMENCLATURE 
In classical electro-magnetic theory, light travels through a 
waveguide, such as optical fiber, in distinct modes.  
Mathematically, these modes correspond to solutions of 
Maxwell’s equations, subject to the boundary conditions 
inherent in the design of the fiber.  Each mode is characterized 

by a propagation constant, β , which describes the 

accumulation of phase as a function of propagation along the 
axis of the fiber.  For oval-core fibers the propagation constant 
has been given explicitly by Shiraishi [2] as 
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where 0n  is the refractive index at the center of the core, 0k  is 

the wave number in vacuum, gxA  and gyA  are the normalized 

x- and y-directional core radii, respectively, defined by 
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1n is the refractive index of the cladding. 

 
Each mode is defined by the integers, m and n, and has the 
unique propagation constant defined by Eq. (1).  The number of 
guided modes depends on the fiber construction, including 
parameters such as core diameter, cladding diameter, 
wavelength, and the index of refraction of the material used to 
construct the fiber.  The number of modes carried by the fiber 
can be controlled through proper design of the fiber parameters.  
Generally, by increasing the diameter of the fiber core, the 
number of bound modes increases.   
 
The mode numbers m and n describe the number of nulls in two 
orthogonal transverse directions, generally labeled “x” and “y,” 
with “z” representing the direction of propagation.  In the 
absence of stress each spatial mode consists of two degenerate 
polarization modes.  The presence of bending stress causes 
these degenerate modes to split, with one polarization of the 
spatial mode having a different propagation constant than the 
other.    
 
Coherent light transmitted through a multimode optical fiber 
randomly couples among the different modes.  This modal 
distribution depends on the manner in which light is launched 
into the optical fiber, as well as how the fiber is bent and 
twisted.  Because the propagation constants are different for the 
various modes, light in each of the modes accumulates different 
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amounts of phase while propagating along the length of the 
fiber.  Since the different modes have spatial overlap, the phase 
differences between the modes result in optical interference at 
the end of the fiber, characterized by a pattern referred to as 
laser speckle (see Fig. 2)   
 

 
 
Figure 2.  Example of laser speckle projected from the end of a 
multi-mode optical fiber, illuminated with coherent laser 
radiation.   

 
Bending and longitudinal stress differentially change the 
propagation constants of the various spatial modes (Smith [3]), 
which changes the phase differences, and cause the speckle 
pattern to flicker.  This changing speckle pattern can then be 
measured and used to detect vibration of the fiber, and 
indirectly the material to which it is mounted.   

DISCUSSION 
Figure 3 illustrates the basic system components required for 
any detection system.  The signal of interest (intruder’s signal, 
in this case) is summed with system and environmental noise in 
the sensor, which produces a voltage that is analyzed by a 
decision network.  The decision network tries to distinguish 
between the intruder and the system/environmental noise. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.  Basic components of an intrusion sensor 
 

System noise arises from unwanted fluctuations (noise) in the 
sensor and subsequent electrical circuits.  Some of this noise 
can be eliminated through careful design.  For example, 
induction from 60Hz power lines can produce tiny electrical 
currents in a circuit, but electrical engineers can largely 
mitigate this source of noise by carefully shielding sensitive 
components.  Other sources of noise are fundamental, and arise 
from the quantum nature of optical and electrical components.  
These sources of noise can be minimized through careful 
design, but never fully eliminated.  Examples include shot 
noise, Johnson (thermal) noise, and 1/f noise (Dereniak, [4]).     
 
System noise sets the limit for the smallest signal that a detector 
can sense.  Environmental noise, however, is often the thing 
that effectively limits a sensor’s ability to detect an intruder. 
 
Environmental noise is particularly troublesome because it 
produces real signals that are much larger than the system 
noise.  These signals, however, are not the result of an intruder.  
Instead, they might be the result of trucks passing on a nearby 
highway, airplanes taking off from a nearby airfield, or people 
walking near the perimeter, but not trying to actually cross it.  
 
Imagine isolating the sensor from all possible sources of 
environmental noise.  It may still produce alarms.  We classify 
those alarms as “false alarms,” since they originate strictly 
within the sensor and its associated electronics, and are the 
result of no actual physical (environmental) stimulus.   
 
On the other hand, if an alarm is caused by environmental 
noise, we call it a “nuisance alarm.”  Though this distinction 
(between false and nuisance alarms) is often inconsequential to 
people who use the system, it is of utmost importance to the 
designer.  If a system suffers from false alarms, the designer 
must improve the sensor and associated physics, but if the 
system suffers from nuisance alarms the designer must 
understand how to reduce the environmental noise, often by 
proper design and tuning of the decision network.  
 
We define environmental noise as “statistically significant” 
when signals caused by the environment are larger than those 
cause by system noise.  The only way to discriminate between 
statistically significant environmental noise and real intruders is 
to use an advanced decision-making network.  This is the sort 
of network that your brain uses when it picks out the sound of a 
pin dropping onto a hardwood floor in a room full of talking 
people.  In this example, the talking people represent 
environmental nose, and the sound made by the dropping pin 
represents the intruder.  A finely tuned decision making 
network, such as the brain, is capable of finding small signals, 
even in the presence of large signals caused by environmental 
noise. 
 
The simplest decision-making network is a straightforward 
threshold.  In such a network, the system identifies an intruder 
whenever any part of the time-varying sensor signal level 
exceeds a threshold (Fig. 4 and Fig. 5).  Simple threshold-based 
systems are susceptible to both environmental and system 
noise, although system noise is easier to ignore.  That’s 
because, in most systems, the system noise can be measured 
and characterized so that the threshold is set just low enough 
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that no system noise exceeds the threshold.   However, simple 
threshold-based systems are very susceptible to environmental 
noise whenever the strength of the environmental noise is 
comparable to the strength of the intruder signal. 
 
We can deduce from the Central Limit Theorem that, in 
environments where there are many types of random noises, the 
strength of the environmental noise has a probability density 
function with a Gaussian (bell) shape (see Fig. 6).  For 
example, a fence perimeter will be subject, with high 
probability, to gentle shaking due to breezes and local traffic.  
Stronger environmental signals, caused by strong winds, 
hurricanes, and earthquakes, will be increasingly less probable.   
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Simple threshold-based decision network in the 
presence of both system and environmental noise.  In simple 
decision networks such as this, it’s relatively easy for 
environmental noise to trigger an alarm.  In fact, in this 
example, the environmental noise exceeds the threshold by 
a larger margin than the signal produced by the intruder. 

 

 
 
Figure 5.  Inside a simple decision network.   
 
To avoid excessive nuisance alarms in a simple threshold 
sensor the installer must set the threshold well above the level 
reached by even infrequent environmental effects, such as 
moderate wind.  In this condition, however, the sensor will be 
unable to detect stealthy intruders – the sorts of intruders who 
might disturb the fence with less amplitude than that caused by 
a gentle breeze.  To escape this conundrum the installer needs 
to have access to a tunable decision network.   
 
A tunable decision network is one that seeks to locate small 
signals of interest, even in the presence of much larger 
environmental “noise” by applying thresholds that rely on more 

complex rules than those governing a simple decision network.  
A tunable decision network is like a neuron in a neural 
network.  Though not nearly as complicated as your brain, it 
shares some basic similarities with the way your brain makes 
decisions.  
 

 
 
Figure 6.  Environmental and system noise.  The vertical 
axis shows the probability of occurrence, and the horizontal 
axis shows the signal strength.  Noise with small signal 
strength is more likely to occur than noise with high signal 
strength.  
 
Think back to how you manage to hear the pin drop on a 
hardwood floor, even with one person talking loudly to a 
second person who’s sitting right next to you.  The pin makes a 
characteristic ringing sound.  Its pitch and duration are also 
distinctly different from that of the conversation going on 
around you.  It’s this difference in both time and frequency that 
allows you to make the distinction between the background 
conversation and the pin dropping on hardwood.   
 
It’s important to remember that a tunable decision network is 
still a simple threshold in the strictest sense of the word.  That 
is, the sensor produces a signal that’s compared with the 
threshold.  If the signal is over the threshold the sensor sounds 
an alarm, and if it’s less than the threshold the sensor doesn’t 
sound the alarm.   
 
The difference between a tunable decision network and a 
simple threshold is that the tunable decision network is a 
composite that looks at several effects before making a 
decision, and weights each contributing factor in order to 
produce a composite signal that’s then compared with a go-no-
go threshold (Fig. 7). 
 
To better understand this distinction, let’s look at an example.  
Suppose you are designing a visual detection system for 
counting alley cats.  You might point your camera at a spot in 
the alley and then monitor the total light captured through the 
lens.  An alley cat, upon entering the field of view, will change 
the amount of light captured by the lens and, if the change 
exceeds a threshold, the software records one alley cat.  
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Figure 7.  Tunable decision networks use apply weighting 
factors (w1, w2, … wn) to multiple rules and then sum these 
to arrive at a composite “signal” that’s then compared with 
a go-no-go threshold. 
 
The problem with this technique is that people, birds, passing 
clouds, sunset/sunrise and small mammals might also change 
the amount of light entering the lens, and trigger a false count.  
To correct this problem you might look for a grouping of image 
pixels that suddenly change amplitude.  If a group of pixels 
changes amplitude, and if the group corresponds to something 
the size of a cat, you count one alley cat.  In this example the 
signal is no longer a change in the total light entering the lens, 
but rather the change from a smaller group.  This compound 
rule (look at changes in light, from a small group of pixels) 
helps to eliminate the possibility of counting a person as a cat.  
 
Of course, this still leaves the problem of how to deal with stray 
dogs, pigeons, blowing litter, changes in illumination, etc.  To 
distinguish the alley cat from each of these background 
circumstances you could use additional rules.  For example, 
you might add rules that look at the three-dimensional shape of 
groups of pixels, counting only those that have a “cat-like” 
appearance.  You might also add rules that look at how fast the 
groups of pixels move, their color, etc.   
 
From this example you can see that we never get away from a 
binary filter.  At some point there’s always a decision to either 
count a cat or not count a cat.  Or, in the case of a perimeter 
detection system, there must always be some point where the 
system either decides to sound an alarm, or not to.     
 
The difference in sophistication of the alarms amounts to 
differences in the sophistication of the rules that go into 
deciding where to put the threshold.  The simplest rule is to 
sound an alarm if a voltage exceeds some level.  More 
sophisticated systems add more sophisticated rules.  These rules 
might involve looking at the frequency content of the intrusion, 
and using a frequency-domain level threshold.  Additionally, 
more sophisticated thresholds might use correlation techniques 
and time-frequency methods.  The more rules we build into the 
threshold – rules that tune it – the less likely is the system to 
falsely identify environmental noise as a real intruder.    
 

One of the most powerful tools for tunable decision networks is 
to use both time- and frequency-domain data in the decision-
making process.  For example, let’s look at the situation in 
figure 4 again.  By digitizing the time-domain sensor data and 
taking the discrete Fourier Transform (typically using the Fast 
Fourier Transform (fft) algorithm) we can convert the sensor 
data into frequency-domain data.  This allows us to more 
carefully analyze distinguishing characteristics of the intruder 
and environment, giving us a more sophisticated threshold with 
which to distinguish the intruder from environmental noise (see 
Fig. 8). 
 
In Fig. 8 we see that the environmental noise tends to be 
clustered at low frequencies, while the intruder (in this 
example) tends to produce disturbances at mid-level 
frequencies.  Although the environmental noise is much larger, 
the intruder is easily distinguished in the frequency domain by 
setting a dual-level threshold that requires a higher level of all 
signal levels below a fixed frequency before counting as an 
alarm. 
 
Frequency discrimination is most useful, obviously, when the 
intruder acts on the sensor in a way that is fundamentally 
different from the way the environment acts.  For example, 
wind on a chain link fence causes it to sway, resulting in lower-
frequency vibrations.  A person cutting the fence with snippers 
will cause higher-frequency (but lower amplitude) vibrations.  
By using frequency-domain tuning, it’s possible to distinguish 
the intruder from the environmental noise. 

 
 

Figure 8.  Fast Fourier Transform (FFT) of time-domain 
data shown in Fig. 4, with dual-level frequency-domain 
threshold (shown as blue line).  Here, the intruder exceeds 
the threshold, while the environmental noise does not.   
 
Intruders can’t always be identified simply by the frequencies 
of the disturbances they cause.  In such instances we can 
employ another powerful mathematical tool called time-
frequency analysis.   Figure 4 shows the frequency content 
from a single snapshot in time.  Now imagine acquiring many 
similar snapshots in time, while looking at the frequency 
content of each snapshot.  This would allow you to look at how 
frequency content evolves over time, giving you another way of 
distinguishing environmental noise from signals of interest.   
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For example, you might observe that trucks passing on a nearby 
road tend to produce the same sorts of frequencies as intruders 
trying to climb over the fence.  But the trucks pass by the fence 
quickly, while someone trying to climb over or cut through the 
fence takes much longer.  This distinguishing factor allows you 
to identify intruders by the bulk length of time that you see 
activity exceeding the frequency-domain threshold that you 
identify for climbers.  
 
Fiber SenSys perimeter sensors use powerful, multi-parameter 
thresholds based on both time and frequency analysis.  Figure 9 
shows the user interface used to tune our point-locating 
SPIDeR fiber-optic perimeter sensor.    These parameters allow 
the user wide flexibility in designing thresholds that satisfy 
their unique requirements, based on location and the type of 
material on which they mount the sensor.   

 
Using these parameters the user can fine-tune their perimeter to 
reduce nuisance alarms (resulting from environmental noise) to 
acceptable levels while maintaining the ability to detect even 
stealthy attempts to violate the perimeter.   
 
Let’s look at each of these parameters in turn, see how they 
work, and how they might be used to distinguish environmental 
noise from real intruders.   
 

 
 

Figure 9.  User interface used to tune Fiber SenSys 
perimeter security products. 
 
Signal:  This parameter works with Gain to determine the 
threshold used for detecting signal between the low and high 
frequencies 
  

Gain: The difference between Gain and Signal is proportional 
to the threshold used between the low and high frequencies 
 
Lo Freq: The decision processor ignores signals below this 
frequency. 
 
Hi Freq: The decision processor ignores signals above this 
frequency  
 
Duration: This is the interval time during which the intrusion 
signal must exceed the threshold, in order to be counted as an 
event.   
 
Tolerance: Defines exceptions to the threshold rule, for longer-
lasting, but weaker signals.   
 
Event Cnt: Shorthand for “event count.”  For the decision 
processor to sound an alarm, there must be a certain number of 
events that occur within the time defined by Event Win 
(shorthand for “event window”).  This number is given by 
Event Cnt. 
 
Event Win: Shorthand for “event window.”  The window of 
time where events are counted.  The number of events counted 
in Event Win must be equal to (or greater than) Event Cnt. 
before the events are reported as an alarm. 
 
Event Msk: Shorthand for event mask.  Events are not counted 
as multiple events if they are too close together in time.  After 
the decision processor finds an event, it ignores any other 
events that occur during the Event Msk time.   
 
Comb:  Sometimes environmental noise happens at discrete 
frequencies that repeat.  For example, in the presence of high-
current devices (like motors, or high voltage/current lines in 
converter stations) one often finds noise at 60Hz, 120Hz, 
180Hz …  The Comb function allows you to define a  
frequency (and its higher harmonics) where the decision 
processor ignores signals.   
 
Wind Reject: Through many years of experimentation, 
scientists at Fiber SenSys have found characteristics of wind 
(environmental noise) that are fundamentally different from 
those of intruders.  When this option is checked the decision 
processor uses these proprietary algorithms to automatically 
screen for the presence of wind, thus greatly reducing the 
possibility of nuisance alarms.   
 
Sensitivity: The electrical systems in Fiber SenSys sensors 
have very low noise, nearly equal to the theoretical limit.  This 
means that the signal detected by the sensors can be greatly 
amplified before system noise begins to cause nuisance alarms.  
By turning up the sensitivity the sensor can be tuned to detect 
very tiny disturbances.  Turning it up too high, however, can 
result in nuisance alarms caused by environmental or even (if 
turned up high enough) system noise. 
 
Let’s look a little closer at the four most fundamental setup 
parameters, and examine a couple of hypothetical cases.  The 
four parameters are: 
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 G Gain (relative, dB) 
 S Signal (relative, dB) 
 D Duration (1 to 100 intervals of 0.1 seconds) 
 T Tolerance (relative, dB) 
 

Increasing the gain is equivalent to making all disturbances 
uniformly more intense.  It is analogous to turning up the 
volume on a radio, which has the effect of increasing the 
volume for all frequencies, and has the effect of making the 
system sensitive to smaller disturbances. 

 
The signal, duration and tolerance parameters work together to 
determine how intense the disturbance must be, and how long it 
must last, for an event to be registered. They have the following 
meanings: An event will occur if the disturbance intensity (after 
amplification by gain) equals or exceeds S for the length of 
time indicated by D.  Keep in mind that it takes a certain 
number of events to make an alarm. 
 
A shorter disturbance won't trigger an event, no matter how 
intense it is. A weaker disturbance may be able to trigger an 
event if it lasts longer, but how much weaker or longer depends 
on the tolerance setting. If T is set to 3, for example, a 
persistent disturbance slightly more intense than 3 dB below S 
will trigger an event after a long time, but a signal below S by 
more than 3 dB will never trigger an event, no matter how long 
it lasts. In other words, in this example, the sensor will only 
tolerate disturbances weaker than S by up to 3 dB.  

 
Note that the gain setting just increases the effective 
disturbance intensity that the signal processor sees. If we 
increase the gain and decrease the signal setting by the same 
amount, there is no change in how disturbances are processed.  

 
Figure 10 is a composite showing the probability of signal 
levels due to system and environmental noise, as well as sensor 
sensitivity.    The horizontal axis represents the signal 
(disturbance) strength that’s input to the decision processor.   
The right horizontal axis applies to the black curve, and shows 
the probability of detection by the event processor, as a 
function of the signal strength.  As the signal strength increases, 
the probability of detection increases.  The left horizontal axis 
shows the noise probability density.  The probability of very 
low noise is relatively high, and the probability decreases as the 
noise signal level increases.   
 
In figure 10 there is very little overlap between the detection 
curve (black) and the environmental noise curve (red), so we 
could lower the threshold without causing false or nuisance 
alarms.  As we lower the threshold the sensor becomes more 
sensitive.  If we lower it too much, though, the curves will 
begin to overlap (Fig. 11) and this will result in more nuisance 
alarms.  
 
To detect the smallest possible intrusions, we want the black 
curve (representative of the sensor’s sensitivity) to extend far to 
the left (toward low signal levels).  However, as we move the 
black curve toward smaller signal strength the black, red, and 
even blue curves start to overlap.  The nuisance alarm rate is 
determined by the overlap between these curves.  The more 
overlap we have, the greater the probability of nuisance alarms.   

 
 

Figure 10.  Noise probability density (blue and red curves) 
and detection probability (black curve) as a function of 
sensor signal strength. 
 
This presents a fundamental dichotomy.  On the one hand, we 
want to make the sensor as sensitive as possible.  On the other 
hand, we need to ensure that we have as few nuisance alarms as 
possible.   
  

 
Figure 11.  Moving the threshold too low causes false 
alarms 
 
We address this problem with the tunable decision network.  By 
tuning the network we greatly reduce the width of the 
probability curves of the system and environmental noise.   To 
see how this works, let’s digress briefly with a short discussion 
about probability, correlation, and random events.   
 
Suppose you flip a penny with your thumb.  What are the odds 
that it lands “heads up?”  You probably have no difficulty 
answering “0.50.”  Now suppose you flip the penny twice.  
What are the odds that it lands heads up both times?  Assuming 
the penny is fair (not biased) the probability is 0.5 that it lands 
heads up on the first throw, and 0.5 that it lands heads up on the 
second throw.  So the odds of landing heads up on two throws 

in a row is 25.05.05.0 =⋅ .  
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This illustrates a very important characteristic of random noise; 
it’s uncorrelated.  Suppose the probability of a given level of 

noise, in a particular window of time, is noiseP , then (if the 

noise is random and un-correlated) the probability of two such 

spikes, one after the other, is equal to ( )2
noiseP .  Since 

probability is always a number less than (or, at best, equal to) 
one, squaring the probability results in a smaller number – a 
smaller probability.   
 
This is a slight simplification because most noise sources are 
not completely random and uncorrelated, so the effect is not 
quite as dramatic as described in the example above.  Signal 
sources, on the other hand, are not random, and typically have a 
high degree of correlation.  They have structure and the parts of 
that structure are correlated with each other: 
 

Th t’s on f t e rea  ns yo can mke out the meanin of a sent  
ce, even with vaious pats mising; the w ds and lettes 

correlate with each oter, so th e’s a lot of redndancy.   
 
You probably already understand this at an intuitive level.  
When you walk up to a house and knock on the door, you 
probably don’t knock just once.  A single knock could sound 
like someone bumping a table in the next room, or the dog’s tail 
bumping the door.  It could sound like random background 
noise in the house, and be ignored.  Since you don’t want to be 
ignored, chances are, when you knock on the door you knock 
more than once: “knock, knock, knock.”  The triple knock is a 
“signal” that is less likely to be mistaken as random 
background noise. 
 
A tunable decision network applies the same sort of logic by 
taking advantage of the statistical differences between noise 
and signal by applying rules that reflect the correlated nature of 
the signals we are looking for.  These rules narrow the 
probability curve of the un-correlated, random noise.  In other 
words, since the noise is un-correlated the “AND” function in 
the summing node of the tunable decision network (Fig. 7) 
effectively raises the noise probability curve to a power greater 
than 1.  Since the probability curve is everywhere less than 1, 
raising it to a higher power makes it much narrower (Fig. 12) 
 
The “AND” function in the tunable decision network has an 
opposite but smaller effect on the detection curve.   Here, the 
sloping region of the curve gets slightly broader, but the 
broadening effect is less pronounced in the detection curve than 
in the noise probability curve because, for signals of interest, 
the various tests that are summed together in the tunable 
decision network are correlated.   
 
The overall result of these two effects is that we can lower our 
threshold without increasing the overlap between the detection 
probability curve and the noise probability density curve (Fig. 
13).  Looking at figure 13, we see that the tunable decision 
network works by effectively reducing the environmental and 
system noise and thus allowing us to set a lower (more 
sensitive) detection threshold, without incurring false/nuisance 
alarms. 
 

Although extremely powerful, the tunable decision network is 
not a panacea.  For any given decision network there will 
always be some disturbance that is just barely larger than the 
noise.  Signal levels lower than this cannot be detected without 
high incidence of false/nuisance alarms.  Though not a cure all, 
the tunable decision network is an extremely powerful tool that 
allows users to gain optimum sensitivity from their sensor 
without burdening them with a high false alarm rate. 

 
Figure 12.  The probability of noise of a given signal 
happening in consecutive windows of time can be found by 
raising the noise probability curve to some power (the 
power used depends on the amount of correlation and the 
number of time windows).  Since the noise probability curve 
is less than one, squaring and cubing it narrows the curve.   

 

 
 

Figure 13.  The tunable decision network narrows the 
probability distribution of the environmental noise, 
allowing the use of a lower threshold without incurring too 
many false alarms, thus expanding the system’s useable 
sensitivity. 
 

CONCLUSION 
False/nuisance alarms are bad for several reasons.  First, a 
system that constantly cries “wolf” when there’s no danger 
soon loses credibility; it becomes ignored.  A security sensor 
that’s ignored isn’t much different from no sensor at all.  If the 
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bogus alarms aren’t ignored, then someone has to spend time 
and effort to investigate them.  At the very least, someone is 
going to have to look out a window.  In practice the 
investigation will have to be more thorough, possibly involving 
on-site investigation by armed security personnel – and that’s 
expensive. 
 
At the very least, false alarms are a nuisance and inconvenient. 
At worst they are expensive or result in the system being 
ignored and ineffective.   
 
The cost associated with investigating nuisance alarms depends 
on the installation.  In some cases the entire perimeter may be 
visible from a privileged vantage point.  In other instances the 
perimeter can be checked using security cameras.  Generally 
speaking, the longer the perimeter, the more difficult (and 
expensive) it is to check on the cause of an alarm.   
 
This can be a real problem on very long perimeters because the 
probability of nuisance alarms increases as the perimeter gets 
longer.  This is true simply because of the accumulating 
opportunity for some environmental nuisance to occur.  For 
example, a 1-km perimeter has less chance of being disturbed 
by a deer or antelope than one that’s 70 km long.  Similarly, a 
shorter perimeter has less chance of being hit by strong winds 
than a very long perimeter.  This holds true for all sorts of 
environmental disturbances such as foot traffic, minor 
earthquakes, nearby traffic, trains, etc.   
 
While the probability of nuisance alarms increases with 
perimeter length, the cost of investigating the alarms also 
increases with distance.  This is a worst-case scenario that can 
quickly get out of hand, especially when the sensor 
manufacturer has designed for sensitivity without also 
providing the ability to use a tunable decision network.    
 
Clearly one cannot design a perimeter sensor system that 
focuses on just one dimension of the system’s performance.  
Sensitivity and tunable decision networks must be designed and 
fully integrated in order to provide optimum detection 
capability without undermining effectiveness by reporting 
excessive nuisance alarms.     
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